AtlantaData ScienceVisualization

Call (and email and chat) early and often!

If you’re in sales, it pays to call (and email, and chat) early and often. This intuitive insight comes from a recent study, “Research on 200 Million Sales Interactions Cracks the Code on Cadences” published by Atlanta startup SalesLoft. This data was shared with me by Butler Raines, SalesLoft’s Head of Product — a dear friend, beautiful human being, and a new-school bitter southerner.

I found the piece illuminating, not only for the nicely presented graphs of customer/sales interactions, but also for the exposition on sales terminology (I learned what a cadence is).


Does SalesLoft have other insights they’d like to share? Many data scientists would like to know!

MathematicsPoliticsSocial Justice

Mathematicians, rock the vote!

Can the resistance inspire a new generation of mathematicians?

Samuel Hansen thinks so. In his recent post on The Aperiodical, he describes how the recent avalanche of math-informed court decisions on gerrymandering in Pennsylvania and elsewhere are putting mathematics in the spotlight.

It is really heartening that discrete geometry and other branches of advanced mathematics can be use to preserve democracy — much in the spirit of the 1964 voting rights act (being signed in the featured image).

Tufts University mathematician Moon Duchin has done a lot of work in this area, leading the effort to train mathematicians to be expert witnesses in gerrymandering cases. Duchin’s Metric Geometry and Gerrymandering Group page has a lot of useful resources.

Consider registering for one of the gerrymandering trainings if you’re a mathematician, statistician, or data scientist based in the Bay Area!


HistoryinclusionMathematicsPoliticsSocial Justice

Black history month is Black mathematicians month — in the UK

In the US, the African American scholar (and February 1st Google doodle subjectCarter G Woodson began working in 1926 to establish “Negro History Week“, for in Woodson’s day the contributions of Black people were  “overlooked, ignored, and even suppressed by the writers of history textbooks and the teachers who use them.” Woodson’s Negro History week evolved into today’s US Black History Month thanks to the efforts of student activists of the 1970s.

My partner, Dr Gayatri Sethi, reminds me that the aspiration of marginalized and minoritized peoples to be heard, to enter into equity in whatever place they call home is universal.

With that in mind, it is no surprise then that Black History month has been celebrated in the UK for the last 30 years in October. This October a group of mathematicians at University College London — and  — decided to make October Black Mathematicians month.

During the month they presented interviews with UK mathematicians starting with Dr Nazar Miheisi who does research in Analysis at King’s College. The Aperiodical blog also ran pieces highlighting Black mathematicians, among them Dr Caleb Ashley who gives this Numberphile segment on the fifth postulate.

Building an equitable mathematics community, or better yet an equitable world, should not be confined to a single month — it is an undertaking that will require continuous and deliberate effort. But it is encouraging and inspiring to see many hopeful signs on a global scale.

Do you know of similar efforts in other countries to encourage the participation of marginalized peoples in science and mathematics? If so, please leave a comment or drop an email!


The Census and the Super Bowl

Seems like a strange combination! But the US Census Bureau has been posting a series of infographics called Stats for Stories that are meant to inspire data driven journalism and blogging.

For Super Bowl 52, they produced the following infographic comparing the Philadelphia and the Boston metro areas in terms of snack food manufacturers, breweries, and sporting goods stores. I think the Pats have an edge.



Super Bowl Biz, from US Census Bureau: retrieved at


Hmm. Well there are even more interesting prospects including National Inventors Day , sobering stats related to the recent Martin Luther King holiday, and a collection of stats related to Black History Month.

Which of these stories excites your passion?

AIAlgorithmsinclusionMachine LearningSocial Justice

AI and the War on Poverty

A.I. and Big Data Could Power a New War on Poverty is the title of on op-ed in today’s New York Times by Elisabeth Mason. I fear that AI and Big Data is more likely to fuel a new War on the Poor unless a radical rethinking occurs. In fact this algorithmic War on the Poor seems to have been going on for quite some time and the Poor are not winning.

Mason posits that AI and Big Data provide three paths forward from the trap of inequality: 1. The ability to match people to available jobs; 2. the ability to deliver customized training that enables people to perform those jobs; and 3. the ability to algorithmically deliver social welfare programs in a more efficient manner.

The first objective seems within the realm of and LinkedIn’s recommendation algorithms and second — personalized training — has a long history in AI systems development. The problem is access: how do you get one of the “good middle-class jobs” in San Francisco when you live in Atlanta and attend a high school that lacks the coursework to prepare you for Stanford? How do you get access to an immersive 3D training environment when your family can’t afford to put down 100 a month for high speed internet and your school lacks the equipment also?

The third part of Mason’s strategy is the most problematic. We’ve seen AI (meaning machine learning and decision making algorithms) used to enforce biased sentencing practices; seen how skewed training data can lead to racial bias in facial recognition; and the use of data-driven methods in predatory lending has also been documented. These examples constitute the tip of a deep problem and still largely un-addressed problem in AI. In short, if the algorithms on which our hopes for transformation are pinned learn from data that reifies the structural racism at the root of social inequity, then we’re simply finding a more optimal route to oppression.

Before we hand over the lives and futures of the most vulnerable members of society to algorithms that we are still trying to fathom, we should strive first for accountability and transparency in algorithms. The efforts underway in New York City to insure algorithmic ethical accountability is one start.

But if machine learning and AI are the new tools of our age, we should empower all people to put the computational tools and conceptual frameworks of data science to work for them. Black Lives Matter activists took the social networking tools to organize protests and share video that has changed and empowered. What could a coming generation do with additional visualization and analytical tools?

It was the prospect of using AI to empower education that first attracted me to the field. I think that the emerging technology has some good to do. But the process must necessarily be participatory. When artists, educators, poets, activists, grocery store owners, gardeners — everyone — can be given access to the tools then I’ll bet on the human capacity to find new paths to expression and opportunity.